
BDCFF Objects: Index

This is a list of all the currently defined BDCFF Object Types, grouped by the
implementation from which they originally come.

Use these specifications to implement the objects in your Boulder Dash
implementation. If any part of any specification seems in any way ambiguous,
please email me and I shall see about resolving the ambiguity.

Each object spec includes some properties at the top of their web page. You can
check out the meaning of the properties in the BDCFF Object Properties page.

From Boulder Dash (by Peter Liepa)

 $0000: Boulder
 $0001: Diamond (Jewel)
 $0002: Magic wall (Enchanted wall)
 $0003: Brick wall
 $0004: Steel wall
 $0005: Expanding wall
 $0006: Rockford
 $0007: Dirt
 $0008: Firefly
 $0009: Butterfly
 $000A: Amoeba

BDCFF Object 0000: Boulder

Object number: $0000
Game class: Boulder Dash (by Peter Liepa)
Object name: Boulder

In this document:

 Properties
 Attributes
 Graphics
 Interactions with other objects
 Specification
 General Algorithm

mailto:peterb@perth.dialix.oz.au

Properties

Animate: yes
Impact explosive: no
Chain explosion action: consumed
Explosion type: n/a
Rounded: yes

Attributes

Attribute format: %00000000 0000000a

a: Flag indicating whether the Boulder is currently considered to be "falling" or
"stationary". The flag is set (1) when falling, clear (0) when stationary. It is
recommended that all boulders begin life as stationary boulders.

Graphics

This GIF shows the graphic of a boulder from the C64 implementation of Boulder
Dash (hence the graphic is 8 double-width pixels wide and 16 pixels high). The
boulder does not have an animation sequence: it looks the same all the time.

Interactions with other objects

The boulder interacts with the following objects:

 Objects it can roll off: any object which is defined to be "rounded" (brick
wall, boulder, diamond). However, in the special cases of rolling off
boulders and diamonds, the boulder or diamond which it is rolling off must
be stationary.

 Objects it can cause to explode: any object which is defined to be
"explosive" (firefly, butterfly, Rockford).

 Magic wall

Specification

The boulder, like the diamond, is an object which falls, rolls off some other
objects, and can explode some other objects when it hits them.

Falling

 A stationary boulder which is discovered to have space underneath it
changes state into a falling boulder (with an appropriate sound played) and
moves down one position.

 A falling boulder which has space underneath it continues to fall another
position.

 A falling boulder discovered to not have space underneath it will have
different effects depending on the object below:

o Cause explosion: if the object below is explosive (firefly, amoeba,
Rockford), the boulder will cause the object below to explode

o Magic wall: see below
o Stop falling: for any other object below, an appropriate sound is

played as of a boulder hitting an object. In addition, a check is made
to see whether the boulder can roll (see below); if so, the boulder is
moved to its new position and is still considered falling, otherwise the
boulder remains in its current position but changes state into a
stationary boulder.

Falling through magic wall

If a falling boulder hits a magic wall, then:

1. A sound is played: the sound is as of a diamond hitting something. This sound
is played regardless of what happens next.

2. If the magic wall was Dormant (a global attribute), the magic wall is now
considered to be On.

3. If the magic wall is now On then
o if there is space in the position below the magic wall then the boulder

morphs into a falling diamond and moves down two positions, to be
below the magic wall

o otherwise the boulder simply disappears

A stationary boulder sitting on top of a magic wall does not activate the magic wall
or move in any way (not even rolling off it).

Rolling

Note that both stationary and falling boulders can roll.

If a boulder is discovered to have a stationary, rounded object (stationary boulder,
stationary diamond, brick wall) below it, then the boulder will attempt to roll off
the object below. Note that falling boulders and diamonds can roll off things too;
they don't have to come to a halt first.

In order for a boulder or diamond to roll, not only must the object below be a brick
wall, stationary boulder or stationary diamond, but the objects to the left and
diagonally left/down (or right and diagonally right/down) must both be space.
Preference is given to rolling to the left over rolling to the right. If these criteria

are satisfied, the boulder or diamond is moved one space immediately to the side
(not diagonally down) and is changes state to be falling (if it wasn't already).

If the boulder is not able to roll, it remains where it is, and changes state into a
stationary boulder (if it wasn't already).

Causing explosions

If a falling boulder hits an explosive object (firefly, butterfly, Rockford), then that
object explodes, consuming the boulder in the explosion. The boulder itself does
not explode.

General Algorithm

procedure ScanStationaryBoulder(in positionType boulderPosition)

Local variables

 positionType NewPosition;

 objectType theObjectBelow;

If the boulder can fall, move it down and mark it as falling.

 NewPosition := GetRelativePosition(boulderPosition, down1);

 theObjectBelow := GetObjectAtPosition(NewPosition);

 if (theObjectBelow == objSpace) then

 PlaceObject(objBoulder, attribFalling, NewPosition);

 PlaceObject(objSpace, attribNone, boulderPosition);

 RequestSound(boulderSound); # yes, even when it starts falling. This

applies to diamonds too (requests diamondSound).

 else

Failing that, see if the boulder can roll

 if (CanRollOff(theObjectBelow)) then

Try rolling left

 NewPosition := GetRelativePosition(boulderPosition, left1);

 if ((GetObjectAtPosition(NewPosition) == objSpace) and

(GetObjectAtPosition(GetRelativePosition(boulderPosition, down1left)) ==

objSpace)) then

 PlaceObject(objBoulder, attribFalling, NewPosition);

 PlaceObject(objSpace, attribNone, boulderPosition);

 else

Try rolling right

 NewPosition := GetRelativePosition(boulderPosition, right1);

 if ((GetObjectAtPosition(NewPosition) == objSpace) and

(GetObjectAtPosition(GetRelativePosition(boulderPosition, down1right)) ==

objSpace)) then

 PlaceObject(objBoulder, attribFalling, NewPosition);

 PlaceObject(objSpace, attribNone, boulderPosition);

 endif

 endif

 endif

 endif

endprocedure

procedure ScanFallingBoulder(in positionType boulderPosition;

 in/out magicWallStatusType magicWallStatus)

Local variables

 positionType NewPosition;

 objectType theObjectBelow;

If the boulder can continue to fall, move it down.

 NewPosition := GetRelativePosition(boulderPosition, down1);

 theObjectBelow := GetObjectAtPosition(NewPosition);

 if (theObjectBelow == objSpace) then

 PlaceObject(objBoulder, attribFalling, NewPosition);

 PlaceObject(objSpace, attribNone, boulderPosition); # ie old position

If the object below is a magic wall, we activate it (if it's off), and

morph into a diamond two spaces below if it's now active. If the wall

is expired, we just disappear (with a sound still though).

 elsif (theObjectBelow == objMagicWall) then

 if (magicWallStatus == kMagicWallOff) then

 magicWallStatus := kMagicWallOn);

 endif

 if (magicWallStatus == kMagicWallOn) then

 NewPosition := GetRelativePosition(boulderPositon, down2);

 if (GetObjectAtPosition(NewPosition) == objSpace) then

 PlaceObject(objDiamond, attribFalling, NewPosition);

 endif

 endif

 PlaceObject(objSpace, attribNone, boulderPosition);

 RequestSound(diamondSound); # note: Diamond sound

 endif

Failing that, we've hit something, so we play a sound and see if we can

roll.

 else

 RequestSound(boulderSound);

 if (CanRollOff(theObjectBelow)) then

Try rolling left

 NewPosition := GetRelativePosition(boulderPosition, left1);

 if ((GetObjectAtPosition(NewPosition) == objSpace) and

(GetObjectAtPosition(GetRelativePosition(boulderPosition, down1left)) ==

objSpace)) then

 PlaceObject(objBoulder, attribFalling, NewPosition);

 PlaceObject(objSpace, attribNone, boulderPosition);

 else

Try rolling right

 NewPosition := GetRelativePosition(boulderPosition, right1);

 if ((GetObjectAtPosition(NewPosition) == objSpace) and

(GetObjectAtPosition(GetRelativePosition(boulderPosition, down1right)) ==

objSpace)) then

 PlaceObject(objBoulder, attribFalling, NewPosition);

 PlaceObject(objSpace, attribNone, boulderPosition);

The boulder is sitting on an object which it could roll off, but it can't

roll, so it comes to a stop.

 else

 PlaceObject(objBoulder, attribStationary, boulderPosition);

 endif

 endif

Failing all that, we see whether we've hit something explosive

 elsif (ImpactExplosive(theObjectBelow) then

 Explode(NewPosition, GetExplosionType(theObjectBelow));

And lastly, failing everything, the boulder comes to a stop.

 else

 PlaceObject(objBoulder, attribStationary, boulderPosition);

 endif

 endif

endprocedure

function CanRollOff(in objectType anObjectBelow):Boolean

If the specified object is one which a boulder or diamond can roll off,

return true otherwise return false.

First of all, only objects which have the property of being "rounded" are

are ones which things can roll off. Secondly, if the object is a boulder

or diamond, the boulder or diamond must be stationary, not falling.

We're going to assume that GetObjectProperty() automatically returns

"true"

for objBoulderStationary, objDiamondStationary, objBrickWall, and returns

"false"

for everything else (including objBoulderFalling and objDiamondFalling).

 return (GetObjectProperty(anObjectBelow, propertyRounded));

endfunction

function ImpactExplosive(in objectType anObject):Boolean

If the specified object has the property of being something that can

explode, return true otherwise return false.

ImpactExplosive objects are: Rockford, Firefly, Butterfly.

 return (GetObjectProperty(anObject, propertyImpactExplosive)); #

true/false

endfunction

function GetExplosionType(in objectType anObject):explosionType;

Assuming that the specified object is in fact explosive, returns the type

of explosion (explodeToSpace or explodeToDiamonds)

Explosive objects are: Rockford, Firefly, Butterfly.

 ASSERT (Explosive(anObjectBelow));

 return (GetObjectProperty(anObject, propertyExplosionType));

endfunction

BDCFF Object 0001: Diamond

Object number: $0001
Game class: Boulder Dash (by Peter Liepa)
Object name: Diamond (or Jewel?)

In this document:

 Properties
 Attributes
 Graphics
 Specification

Properties

Animate: yes
Impact explosive: no
Chain explosion action: consumed
Explosion type: n/a
Rounded: yes

Attributes

Attribute format: %00000000 0000000a

a: Flag indicating whether the diamond is currently considered to be "falling" or
"stationary". The flag is set (1) when falling, clear (0) when stationary. It is
recommended that all diamonds begin life as stationary diamonds.

Graphics

This GIF shows the animation sequence of a diamond from the C64 implementation
of Boulder Dash (hence the graphics are 8 double-width pixels wide and 16 pixels
high).

Specification

The diamond is almost identical to the boulder. Basically, you can take the
boulder's algorithm and replace all instances of "boulder" with "diamond", and in

the case of falling through the magic wall, a diamond morphs into a boulder in the
same way that boulders morph into diamonds.

Please refer to the boulder specification for full details.

BDCFF Object 0002: Magic wall

Object number: $0002
Game class: Boulder Dash (by Peter Liepa)
Object name: Magic wall (or Enchanted wall?)

In this document:

 Properties
 Attributes
 Graphics
 Interactions with other objects
 Specification
 General Algorithm

Properties

Animate: no
Impact explosive: no
Chain explosion action: consumed
Explosion type: n/a
Rounded: no

Attributes

Attribute format: %00000000 00000000

There are no attributes for this object type. (There is a global attribute, being the
state of the wall: dormant, on or expired, but that doesn't apply to individual
pieces of magic wall.)

Graphics

When dormant or expired, the magic wall looks like ordinary brick wall:

When on, the magic wall animates in a 4-stage animation sequence:

This GIFs show the graphics from the C64 implementation of Boulder Dash (hence
the graphics are 8 double-width pixels wide and 16 pixels high).

Interactions with other objects

Magic wall is inanimate. It doesn't actually do anything by itself, and therefore
doesn't interact with any other objects.

Instead, other objects (boulder, diamond) interact with magic wall.

Specification

Magic wall starts life dormant, and visually looks just like ordinary brick wall, until
a boulder or diamond falls on it. Then all magic wall in the cave gets turned on for
a time: it sparkles in a distinctive way, it makes a continous tinkling sound, and in
this time any boulder or diamond that hits the wall gets changed into a diamond or
boulder respectively, and falls through, making an appropriate diamond sound or
boulder sound respectively. After a certain time has elapsed (the magic wall milling
time), the magic wall expires; it goes back to looking like ordinary brick wall, no
longer makes any sound, and any boulder or diamond that fall on the wall just
disappear (but still make the same sound as appropriate).

States of magic wall

1. Dormant: Looks just like ordinary brick wall, until a boulder or diamond
activates it.

2. On: Sparkles, makes sound, and changes boulders and diamonds into
diamonds and boulders, until the Magic Wall Milling Time runs out.

3. Expired: Looks just like ordinary brick wall; any boulders and diamonds
hitting it just disappear but still with a sound.

Objects move two squares in one frame

Note that when a boulder or diamond hits a magic wall (whether on or not), the
object effectively moves two squares in one frame: one moment it's above the
wall, the next moment it's two squares down, below the wall; it's never "inside" the
wall. Note also that if there is any object underneath the wall at the point where
the boulder or diamond falls through, the boulder or diamond is lost (which is
sometimes a helpful way of getting rid of excess boulders).

Stationary objects don't fall through

Note that a stationary boulder or diamond sits on a magic wall without falling
through or turning it on. Note also that magic wall isn't "rounded"; boulders and
diamonds do not roll off magic wall like they do brick wall.

General Algorithm

See the boulder specification for how boulders (and diamonds) interact with magic
wall.

BDCFF Object 0003: Brick wall

Object number: $0003
Game class: Boulder Dash (by Peter Liepa)
Object name: Brick wall

In this document:

 Properties
 Attributes
 Graphics
 Interactions with other objects
 Specification

Properties

Animate: no
Impact explosive: no
Chain explosion action: consumed
Explosion type: n/a
Rounded: yes

Attributes

Attribute format: %00000000 00000000

There are no attributes for this object type.

Graphics

This GIF shows the graphic of brick wall from the C64 implementation of Boulder
Dash (hence the graphic is 8 double-width pixels wide and 16 pixels high). The
object does not have an animation sequence: it looks the same all the time.

Interactions with other objects

Brick wall is inanimate. It doesn't actually do anything by itself, and therefore
doesn't interact with any other objects.

Specification

Basically, brick wall is just wall, with the properties that it is rounded (and thus
boulders or diamonds can roll off it), and that unlike steel wall, it can be consumed
in an explosion.

Magic wall and expanding wall look the same as brick wall most of the time.

BDCFF Object 0004: Steel wall

Object number: $0004
Game class: Boulder Dash (by Peter Liepa)
Object name: Steel wall

In this document:

 Properties
 Attributes
 Graphics
 Interactions with other objects
 Specification

Properties

Animate: no
Impact explosive: no
Chain explosion action: unaffected
Explosion type: n/a
Rounded: no

Attributes

Attribute format: %00000000 00000000

There are no attributes for this object type.

Graphics

This GIF shows the graphic of steel wall from the C64 implementation of Boulder
Dash (hence the graphic is 8 double-width pixels wide and 16 pixels high). The
object does not have an animation sequence: it looks the same all the time.

Interactions with other objects

Steel wall is inanimate. It doesn't actually do anything by itself, and therefore
doesn't interact with any other objects.

Specification

Basically, steel wall is just wall, with the property that it remains unaffected by
explosions. It is not rounded, so boulders and diamonds sit on top without rolling
off.

BDCFF Object 0005: Expanding wall

Object number: $0005
Game class: Boulder Dash (by Peter Liepa)
Object name: Expanding wall

In this document:

 Properties
 Attributes
 Graphics
 Specification
 General Algorithm

Properties

Animate: yes
Impact explosive: no
Chain explosion action: consumed
Explosion type: n/a
Rounded: no

Attributes

Attribute format: %00000000 00000000

There are no attributes for this object type.

Graphics

Expanding wall looks identical to brick wall.

Specification

Expanding wall looks identical to brick wall, but is not rounded; things don't roll
off it.

Expanding wall "grows" sideways whenever possible. If ever a piece of expanding
wall discovers that the position to the immediate left or right is empty space, it
grows to fill that space. A piece of expanding wall can expand to fill both the left

and the right spaces in one frame. However, the newly created pieces of expanding
wall don't get to themselves grow until the next frame, so if you put a piece of
expanding wall into a cave of space, you will see it expanding left and right at the
rate of one space per frame.

Each time expanding wall grows, an appropriate sound is made (failing all else, just
the standard boulder crash sound, the same as is used when a boulder starts or
stops falling, or is pushed).

General Algorithm

procedure ScanExpandingWall(in positionType wallPosition)

Local variables

 positionType NewPosition;

Try to grow left

 NewPosition := GetRelativePosition(wallPosition, left1);

 if (GetObjectAtPosition(NewPosition) == objSpace) then

 PlaceObject(objExpandingWall, attribNone, NewPosition);

 endif

Try to grow right

 NewPosition := GetRelativePosition(wallPosition, right1);

 if (GetObjectAtPosition(NewPosition) == objSpace) then

 PlaceObject(objExpandingWall, attribNone, NewPosition);

 endif

endprocedure

BDCFF Object 0006: Rockford

Object number: $0006
Game class: Boulder Dash (by Peter Liepa)
Object name: Rockford

In this document:

 Properties
 Attributes
 Graphics
 Interactions with other objects
 Specification
 General Algorithm

Properties

Animate: yes
Impact explosive: yes
Chain explosion action: consumed
Explosion type: explodeToSpace
Rounded: no

Attributes

Attribute format: %00000000 00000000

There are no attributes for this object type.

Graphics

This GIF shows the animation sequences of Rockford from the C64 implementation
of Boulder Dash (hence the graphics are 8 double-width pixels wide and 16 pixels
high).

There are six rows of graphics:

1. Rockford facing forward (no animation sequence; just one graphic);
2. Rockford facing forward, blinking
3. Rockford facing forward, tapping foot
4. Rockford facing forward, blinking and tapping foot
5. Rockford facing left
6. Rockford facing right

Rockford Animation

This description of the Rockford animation sequences is based on the C64
implementation. Other implementations may do things differently. However, the
Rockford blinking and tapping was considered an important part of the look and
feel of the C64 implementation at least.

Facing left or right

There are animation sequences for when Rockford is moving left or right, but not
up or down. What happens is that if Rockford is moving up or down, then the
animation sequence of the last horizontal movement is used. For example, if
Rockford moves right and then up, the "moving-right" animation sequence will be
used for that time. If Rockford then moves left and up, the "moving-left" animation
sequence is used during this time. This brings up an obvious question: what
happens at the beginning of a cave if Rockford moves up or down without first
having moved horizontally? The answer is that Rockford will face left as he moves
up or down initially.

Tapping foot and blinking

When Rockford is not moving, he faces forward (out of the screen towards the
player). Rockford gets bored; he taps his foot and blinks his eyes. Blinking and
tapping are independent of each other; in the C64 implementation, the upper and
lower halves of his body are controlled separately.

Animation sequences are eight frames long, and each frame is displayed for two
ticks, so it takes 16 ticks (about 0.27 seconds) to complete each animation
sequence. At the beginning of each new animation sequence (ie every 0.27
seconds), if Rockford is not currently moving, it is decided whether Rockford will
be idle, blink, tap his foot, or blink and tap his foot. There is a 25% (1/4) chance he
will blink each animation sequence, and a 6.25% (1/16) chance that he will stop
tapping (if he is currently tapping) or start tapping if he isn't.

Interactions with other objects

Rockford interacts with the following objects:

 Space, Dirt: can be moved through, leaving space behind
 Diamond: can be collected, leaving space behind. Rockford is able to collect

diamonds while they are falling. In particular, it is useful to hold down the
fire button and collect diamonds as they fall past.

 Boulder: can be pushed. There is a 1 in 8 chance that Rockford successfully
pushes a boulder each frame that he tries (and that it is possible he
succeeds). Rockford can not push boulders that are falling.

 Outbox: causes the cave to be exited

Specification

Rockford is the player, and so Rockford's movements are controlled by the player.
The basic objective being, of course, to collect enough diamonds to activate the
exit, and to get out alive (without being killed by various means or running out of
time).

Rockford movement performed during scan routine

There are three posibilities for when an implementation of BoulderDash can check
the player controls (joystick) and move Rockford:

1. Before the cave scan routine
2. During the cave scan routine
3. After the cave scan routine

When the scan is performed can make a difference as to how the objects in the
cave interact. If Rockford and another object both attempt to move into the same
position, who succeeds depends on when the Rockford move routine is performed.
If it is done before the cave scan, Rockford will always get priority. If it is done
during the cave scan, who gets priority depends on the direction Rockford is
moving in. And if the Rockford move routine is done after the cave scan routine,
then the other object will get priority.

In BoulderDash I on the C64, the Rockford move routine is done during the cave
scan routine: that is, when the scan routine comes across Rockford, it then looks at
the joystick and processes it appropriately. This technique has an advantage: it
doesn't presume that Rockford actually exists in the cave (Rockford doesn't exist
during the pre-Rockford sequence or after he dies). Doing it this way makes it
easier for the cave to continue on in its normal way regardless of whether Rockford
exists or not.

Movement controls

Using the joystick or other control device, the player can control Rockford's
movement. Rockford can move up, down, left and right only, not diagonally. In
BoulderDash I for the C64, if the player presses diagonally, Rockford moves
horizontally (the horizontal component has priority over the vertical component).
Although perhaps not critical, I personally am used to the player controls behaving
in this fashion, and I initially found it frustrating when playing an implementation
that behaved differently. Each implementation may well have its own
idiosyncrasies, but if you're out to clone the C64 look & feel, then you might want
to take note of the C64's particular behaviour.

The fire button on the joystick can be used to "move without moving"; that is,
everything happens as if Rockford did move in the indicated direction, but Rockford
isn't actually moved. This is critical for some caves which require this technique.

General Algorithm

procedure ScanRockford(in positionType currentScanPosition;

 inout positionType RockfordLocation;

 inout Boolean RockfordAnimationFacingDirection;

 in Boolean demoMode;

 in Boolean twoJoystickMode;

 in playerType currentPlayer;

 inout integer numRoundsSinceRockfordSeenAlive)

We have come across Rockford during the scan routine. Read the joystick

or

demo data to find out where Rockford wants to go, and call a subroutine

to

actually do it.

 ASSERT(numRoundsSinceRockfordSeenAlive >= 0);

Local variables

 joystickDirectionRecord JoyPos;

If we're in demo mode, we get our joystick movements from the demo data

 if (demoMode) then

 JoyPos := GetNextDemoMovement();

 else

Otherwise if we're in a real game, we get our joystick movements from

the current player's input device (joystick, keyboard, whatever).

 JoyPos := GetJoystickPos();

 endif

Call a subroutine to actually deal with the joystick movement.

 MoveRockfordStage1(currentScanPosition, RockfordLocation, JoyPos,

RockfordAnimationFacingDirection);

Rockford has been seen alive, so reset the counter indicating the number

of rounds since Rockford was last seen alive.

 numRoundsSinceRockfordSeenAlive := 0;

endprocedure ScanRockford

procedure MoveRockfordStage1(in positionType currentScanPosition;

 inout positionType RockfordLocation;

 in joystickDirectionRecord JoyPos;

 inout Boolean RockfordAnimationFacingDirection)

Note: in this routine, if the user presses diagonally, the horizontal

movement takes

precedence over the vertical movement; ie Rockford moves horizontally.

Local variables

 Boolean ActuallyMoved;

 positionType NewPosition;

Determine Rockford's new location if he actually moves there (ie he isn't

blocked by a wall or something, and isn't holding the fire button down).

 switch (JoyPos.direction) of

 case down:

 RockfordMoving := true;

 NewPosition := GetRelativePosition(currentScanPosition, down1);

 elscase up:

 RockfordMoving := true;

 NewPosition := GetRelativePosition(currentScanPosition, up1);

 elscase right:

 RockfordMoving := true;

 RockfordAnimationFacingDirection := facingRight;

 NewPosition := GetRelativePosition(currentScanPosition, right1);

 elscase left:

 RockfordMoving := true;

 RockfordAnimationFacingDirection := facingLeft;

 NewPosition := GetRelativePosition(currentScanPosition, left1);

 else

 RockfordMoving := false;

 endcase

Call a subroutine to actually deal with this further.

 ActuallyMoved := MoveRockfordStage2(currentScanPosition, NewPosition,

JoyPos);

If Rockford did in fact physically move, we update our record of

Rockford's

position (used by the screen scrolling algorithm to know where to

scroll).

 if (ActuallyMoved) then

 RockfordLocation := NewPosition;

 endif

 endswitch

endprocedure MoveRockfordStage1

function MoveRockfordStage2(in positionType originalPosition;

 in positionType newPosition;

 in joystickDirectionRecord JoyPos):Boolean

Part of the Move Rockford routine. Call MoveRockfordStage3 to do all the

work.

All this routine does is check to see if the fire button was down, and

so either move Rockford to his new position or put a space where he would

have moved. Returns true if Rockford really did physically move.

Local variables

 Boolean ActuallyMoved;

Call a subroutine to move Rockford. It returns true if the movement was

successful (without regard to the fire button).

 ActuallyMoved := MoveRockfordStage3(newPosition, JoyPos);

If the movement was successful, we check the fire button to determine

whether Rockford actually physically moves to the new positon or not.

 if (ActuallyMoved) then

 if (JoyPos.fireButtonDown) then

 PlaceSpace(newPosition);

 ActuallyMoved := false;

 else

 PlaceRockford(newPosition);

 PlaceSpace(originalPosition);

 endif

 endif

Tell our caller whether or not Rockford physically moved to a new

position.

 return ActuallyMoved;

endfunction MoveRockfordStage2

function MoveRockfordStage3(in positionType newPosition;

 in joystickDirectionRecord JoyPos):Boolean

See what object is in the space where Rockford is moving and deal with it

appropriately. Returns true if the movement was successful, false

otherwise.

Local Variables

 Boolean movementSuccessful;

 objectType theObject;

 positionType NewBoulderPosition;

Determine what object is in the place where Rockford is moving.

 movementSuccessful := false;

 theObject := GetObjectAtPosition(newPosition);

 switch (theObject) of

Space: move there, and play a sound (lower pitch white noise)

 case objSpace:

 movementSuccessful := true;

 RequestRockfordMovementSound(movingThroughSpace);

Dirt: move there, and play a sound (higher pitch white noise)

 elscase objDirt:

 movementSuccessful := true;

 RequestRockfordMovementSound(movingThroughDirt);

Diamond: pick it up

 elscase objStationaryDiamond:

 movementSuccessful := true;

 PickUpDiamond();

OutBox: flag that we've got out of the cave

 elscase objOutBox:

 movementSuccessful := true;

 FlagThatWeAreExitingTheCave(and that we got out alive);

Boulder: push it

 elscase objStationaryBoulder:

 if (JoyPos.direction == left) then

 NewBoulderPosition := GetRelativePosition(newPosition, left1);

 if (GetObjectAtPosition(NewBoulderPosition) == objSpace) then

 movementSuccessful := PushBoulder(NewBoulderPosition);

 endif

 elsif (JoyPos.direction == right) then

 NewBoulderPosition := GetRelativePosition(newPosition, right1);

 if (GetObjectAtPosition(NewBoulderPosition) == objSpace) then

 movementSuccessful := PushBoulder(NewBoulderPosition);

 endif

 endif

 endcase

 endswitch

Return an indication of whether we were successful in moving.

 return movementSuccessful;

endfunction MoveRockfordStage3

function PushBoulder(in positionType newBoulderPosition)

There is a 12.5% (1 in 8) than Rockford will succeed in pushing the

boulder.

Return true if boulder successfully pushed, false if not.

Local variables

 Boolean pushSuccessful;

 pushSuccessful := (GetRandomNumber(0, 7) == 0);

 if (pushSuccessful) then

 RequestSound(boulderSound);

 PlaceBoulder(newBoulderPosition);

 endif

 return pushSuccessful;

endfunction PushBoulder

procedure PickUpDiamond()

Player has picked up a diamond. Increase their score, increase their

number

of diamonds collected, and check whether they have enough diamonds now.

 RequestSound(pickedUpDiamondSound);

 CurrentPlayerData.score += CurrentPlayerData.currentDiamondValue;

 CheckForBonusLife();

 CurrentPlayerData.diamondsCollected++;

 CheckEnoughDiamonds();

endprocedure PickUpDiamond

procedure CheckEnoughDiamonds()

 if (CurrentPlayerData.diamondsCollected == CaveData.diamondsNeeded) then

 CurrentPlayerData.gotEnoughDiamonds := true;

 CurrentPlayerData.currentDiamondValue := CaveData.extraDiamondValue;

 Update statusbar;

 RequestSound(crackSound);

 Request screen to flash white to indicate got enough diamonds;

 endif

endprocedure CheckEnoughDiamonds

procedure AnimateRockford(inout Boolean Tapping;

 inout Boolean Blinking;

 in Boolean RockfordAnimationFacingDirection)

Called by the animation routine every animation frame

If Rockford is currently moving, we display the right-moving or left-

moving animation

sequence.

 if (RockfordMoving)

Can't tap or blink while moving

 Tapping := false;

 Blinking := false;

Set up animation left or right as appropriate

 if (RockfordAnimationFacingDirection == facingRight)

 doing right-facing Rockford animation sequence

 else

 doing left-facing Rockford animation sequence

 endif

If Rockford is not currently moving, we display a forward facing

animation sequence.

Rockford might be idle, tapping, blinking, or both.

 else

If we're at the beginning of an animation sequence, then check whether we

will blink or tap for this sequence

 if (AnimationStage == 1)

1 in 4 chance of blinking

 Blinking := (GetRandomNumber(0, 3) == 0);

1 in 16 chance of starting or stopping foot tapping

 if (GetRandomNumber(0, 15) == 0)

 Tapping := not Tapping;

 endif

 endif

 doing forward-facing Rockford animation sequence (idle, blink, tap, or

blink&tap)

endprocedure AnimateRockford

BDCFF Object 0007: Dirt

Object number: $0007
Game class: Boulder Dash (by Peter Liepa)
Object name: Dirt

In this document:

 Properties
 Attributes
 Graphics
 Interactions with other objects
 Specification

Properties

Animate: no
Impact explosive: no
Chain explosion action: consumed
Explosion type: n/a
Rounded: no

Attributes

Attribute format: %00000000 00000000

There are no attributes for this object type.

Graphics

This GIF shows the graphic of dirt from the C64 implementation of Boulder Dash
(hence the graphic is 8 double-width pixels wide and 16 pixels high). It does not
have an animation sequence: it looks the same all the time.

Interactions with other objects

Dirt is inanimate. It doesn't actually do anything by itself, and therefore doesn't
interact with any other objects.

Specification

Dirt exists just to hold things up. :) Rockford can move through dirt, amoeba can
grow into dirt, but boulders and diamonds sit on dirt without rolling off. Fireflies
and butterflies can not move through dirt.

BDCFF Object 0008: Firefly

Object number: $0008
Game class: Boulder Dash (by Peter Liepa)
Object name: Firefly

In this document:

 Properties
 Attributes
 Graphics
 Interactions with other objects
 Specification
 General Algorithm

Properties

Animate: yes
Impact explosive: yes
Chain explosion action: consumed

Explosion type: explodeToSpace
Rounded: no

Attributes

Attribute format: %00000000 000000aa

aa: Initial "facing" direction:

 00 = facing left
 01 = facing up
 10 = facing right
 11 = facing down

All fireflies should start life "facing left" (aa=00). This means that the first
movement a fly will make is down (if possible), because the fly will turn to its left,
resulting in moving down.

Graphics

This GIF shows the animation sequence of a firefly from the C64 implementation of
Boulder Dash (hence the graphics are 8 double-width pixels wide and 16 pixels
high).

Interactions with other objects

The firefly interacts with the following objects:

 Explodes on contact with: amoeba, Rockford, Rockford (scanned this frame)

Specification

Fireflies, like butterflies, are creatures which move around in a set pattern. If
impacted, or on contact with amoeba or Rockford, fireflies explode into space.

Fireflies are considered to be facing in one of four directions (up, down, left, right)
although visually you can't tell which direction a firefly is currently facing by
looking at it. Fireflies always like to turn to their left if possible (going round and
round in circles if possible), failing that they will go forward, or finally they will
turn to their right if they can't move forward.

Turning corners

Fireflies do not always turn corners instantly. Flies can turn in their "preferred
direction" instantly, but otherwise take time to turn against their "preferred
direction".

In BoulderDash I (on the C64), fireflies always begin "facing left", meaning that they
will make their first movement down if possible (because fireflies always try to
turn left when possible). The C64 cave format allows you to specify the initial
direction of each firefly individually, however all caves in the C64 BoulderDash I
have their fireflies facing left to begin with. It is recommended that all fireflies
begin life facing left.

The way a firefly works is this:

if (space to the firefly's left is empty) then

 turn 90 degrees to firefly's left;

 move one space in this new direction;

} else if (space ahead is empty) then

 move one space forwards;

} else {

 turn 90 degrees to the firefly's right;

 do not move;

}

The key thing to note is that if a firefly is forced to turn against its "preferred
direction", it does not actually move for that frame.

The result is that when a firefly can make a left turn, it will do so "instantly", but if
forced to make a right turn, it will pause for one frame before doing so. If forced
to turn around (180 degrees), it will pause for two frames before going back the
way it came.

Checking for amoeba and Rockford

A fly will check all four directions next to it for amoeba or Rockford before it
attempts to move each frame. Should it find any amoeba or Rockford, it explodes
on the spot. It is the fly that explodes, not Rockford or the amoeba.

Because the check is made before the fly moves, you may momentarily see the fly
next to an amoeba/Rockford for one frame before the explosion happens. Note
that (unusually), the firefly will also explode if next to a "Rockford, scanned this
frame". By "scanned this frame" I mean that Rockford has already moved once
during this scan frame, and it is marked as such so that if the same Rockford is
come across again in the same scan frame (because Rockford moved down or right)
then the player won't have the opportinity to move Rockford again.

General Algorithm

procedure ScanFirefly(in positionType positionOfFirefly;

 in directionType directionOfFirefly)

Local variables

 positionType NewPosition;

 directionType NewDirection;

First check whether the firefly will explode by being next to Rockford,

Rockford-scanned-this-frame or amoeba but not amoeba-scanned-this-frame.

 if (FlyWillExplode(positionOfFirefly)) then

 Explode(positionOfFirefly, explodeToSpace);

 else

Failing that, attempt to move turn left and move there if possible

 NewPosition = GetNextFlyPosition(positionOfFirefly, directionOfFirefly,

turnLeft);

 if (GetObjectAtPosition(NewPosition) == objSpace) then

 NewDirection = GetNewDirection(directionOfFirefly, turnLeft);

 PlaceFirefly(NewPosition, NewDirection);

 PlaceSpace(positionOfFirefly); # ie old position

 else

Failing that, attempt to move straight ahead

 NewPosition = GetNextFlyPosition(positionOfFirefly, directionOfFirefly,

straightAhead);

 if (GetObjectAtPosition(NewPosition) == objSpace) then

 PlaceFirefly(NewPosition, directionOfFirefly); # ie keep same direction

 PlaceSpace(positionOfFirefly); # ie old position

 else

Failing that, turn to the right but do not move

 NewDirection = GetNewDirection(directionOfFirefly, turnRight);

 PlaceFirefly(positionOfFirefly, NewDirection); # old position, new

direction

 endif

 endif

 endif

endprocedure

function FlyWillExplode(in positionType aPosition):Boolean

Check the four directions around a fly at a given position to see whether

it will explode. Returns true if so, false if not.

Local variables

 Boolean ExplodedYet;

Check the four directions to see whether the fly will explode

 ExplodedYet := CheckFlyExplode(GetRelativePosition(aPosition, up1));

 if (not ExplodedYet) then

 ExplodedYet := CheckFlyExplode(GetRelativePosition(aPosition, left1));

 endif

 if (not ExplodedYet) then

 ExplodedYet := CheckFlyExplode(GetRelativePosition(aPosition, right1));

 endif

 if (not ExplodedYet) then

 ExplodedYet := CheckFlyExplode(GetRelativePosition(aPosition, down1));

 endif

Return function result

 return ExplodedYet;

endfunction

function CheckFlyExplode(in positionType aPosition):Boolean

Check the given position to see whether it contains an object which a

fly will explode if it is in contact with (ie Rockford or Amoeba).

Returns true if so, false if not.

 return (GetObjectAtPosition(aPosition) in {objRockford,

objRockfordScanned, objAmoeba});

endfunction

BDCFF Object 0009: Butterfly

Object number: $0009
Game class: Boulder Dash (by Peter Liepa)
Object name: Butterfly

In this document:

 Properties
 Attributes
 Graphics
 Interactions with other objects
 Specification

Properties

Animate: yes
Impact explosive: yes
Chain explosion action: consumed
Explosion type: explodeToDiamonds
Rounded: no

Attributes

Attribute format: %00000000 000000aa

aa: Initial "facing" direction:

 00 = facing left
 01 = facing up
 10 = facing right

 11 = facing down

Note: These codes are different than those used internally by the Commodore 64
implementation of Boulder Dash. The above codes are the same as for the firefly,
for consistency, rather than the C64 implementation which uses 00=down, 01=left,
10=up, 11=right.

All fireflies should start life "facing down" (aa=11). This means that the first
movement a butterfly will make is left (if possible), because the fly will turn to its
right, resulting in moving left.

Graphics

This GIF shows the animation sequence of a butterfly from the C64 implementation
of Boulder Dash (hence the graphics are 8 double-width pixels wide and 16 pixels
high).

Interactions with other objects

The butterfly interacts with the following objects:

 Explodes on contact with: amoeba, Rockford, Rockford (scanned this frame)

Specification

Butterflies are the same as fireflies except

 butterflies usually begin life facing down rather than left
 butterflies prefer to go to their right (failing that go straight, failing that

turn left)
 they look different
 when they explode, they explode to diamonds rather than space

Please refer to the firefly specification for full details.

BDCFF Object 000A: Amoeba

Object number: $000A
Game class: Boulder Dash (by Peter Liepa)
Object name: Amoeba

In this document:

 Properties
 Attributes
 Graphics
 Interactions with other objects
 Specification
 General Algorithm

Properties

Animate: yes
Impact explosive: no
Chain explosion action: consumed
Explosion type: n/a
Rounded: no

Attributes

Attribute format: %00000000 00000000

There are no attributes for this object type.

Graphics

This GIF shows the animation sequence of amoeba from the C64 implementation of
Boulder Dash (hence the graphics are 8 double-width pixels wide and 16 pixels
high).

Interactions with other objects

The boulder interacts with the following objects:

 Objects it can grow into: space, dirt

Specification

Amoeba is stuff that grows randomly. If trapped such that it can't grow any more, it
"suffocates" and turns into diamonds. If it grows too large, it turns into boulders.
Fireflies and butterflies will explode on contact with amoeba.

Every scan, a count is kept of how many amoeba have been found. For each
amoeba found during the current scan, it does these things:

1. If there were too many (see below) amoeba found in the scan during the last
frame, the amoeba is considered to have grown too large, and so all amoeba
found in this scan frame are quietly replaced with boulders.

2. Failing that, if it was determined in the scan during the last frame that the
amoeba was completely enclosed (could not grow), then each amoeba is
quietly replaced with a diamond.

3. Failing that, if there have been no amoeba found during the current scan
that had the potential to grow, then a check is made to see whether this
amoeba could grow. If it is possible for it to grow, then the flag is changed
to indicate that there is at least one amoeba in existance that can grow
during this frame.

4. If the amoeba did not turn into a diamond or a boulder (in steps 1 or 2
above), it may or may not attempt to grow. A random number is generated
to decide whether the amoeba will attempt grow: it has a 4/128 chance
(about 3%) normally, or a 4/16 chance (25%) in some circumstances. If the
decision is that the amoeba will atempt to grow, it randomly chooses one of
the four directions to grow in. If that direction contains a space or dirt, the
amoeba grows to fill that spot. The new amoeba just grown does not itself
get the chance to grow until the next frame (ie the new amoeba is marked
as "amoeba, scanned this frame").

How many is too many?

For the Commodore 64 implementation of Boulder Dash, "too many" amoeba (the
point where they turn into boulders) is 200 or more. Since other implementations
of Boulder Dash may permit cave sizes other than 40 x 22 (= 880 squares), I suggest
that "too many" is defined as being 200/880 = 22.7% of the total number of squares
available in the cave. In other words, once 22.7% or more of the cave is occupied
by amoeba, it should turn into boulders.

When is it 3% and when 25%?

Initially, the amoeba growth probability is 4/128 (about 3%). Once the "amoeba
slow growth time" has elapsed, the amoeba suddenly starts growing a lot quicker
(amoeba growth probability = 25%). The "amoeba slow growth time" is set on a
cave-by-cave basis, and is in seconds.

General Algorithm

procedure ScanAmoeba(in positionType positionOfAmoeba;

 in integer anAmoebaRandomFactor;

 in Boolean amoebaSuffocatedLastFrame;

 inout Boolean atLeastOneAmoebaFoundThisFrameWhichCanGrow;

 in integer totalAmoebaFoundLastFrame;

 inout integer numberOfAmoebaFoundThisFrame)

Local variables

 directionType direction;

 positionType NewPosition;

 ASSERT(anAmoebaRandomFactor > 0);

 ASSERT(totalAmoebaFoundLastFrame > 0);

 ASSERT(numberOfAmoebaFoundThisFrame > 0);

 numberOfAmoebaFoundThisFrame++;

If the amoeba grew too big last frame, morph into a boulder.

kTooManyAmoeba = 200 for original Boulder Dash.

 if (totalAmoebaFoundLastFrame >= kTooManyAmoeba) then

 PlaceObject(objBoulder, attribStationary, positionOfAmoeba);

 else

If the amoeba suffocated last frame, morph into a diamond

 if (amoebaSuffocatedLastFrame) then

 PlaceObject(objDiamond, attribStationary, positionOfAmoeba);

 else

If we haven't yet found any amoeba this frame which can grow, we check to

see whether this particular amoeba can grow.

 if (not atLeastOneAmoebaFoundThisFrameWhichCanGrow) then

 foreach direction in (up1, left1, right1, down1) do

 if (GetObjectAtPosition(GetRelativePosition(positionOfAmoeba, direction))

in {objSpace, objDirt}) then

 atLeastOneAmoebaFoundThisFrameWhichCanGrow := true;

 endif

 endforeach

 endif

If this amoeba decides to attempt to grow, it randomly chooses a

direction,

and if it can grow in that direction, does so.

 if (AmoebaRandomlyDecidesToGrow(anAmoebaRandomFactor)) then

 direction := GetRandomDirection();

 NewPosition = GetRelativePosition(positionOfAmoeba, direction);

 if (GetObjectAtPosition(NewPosition) in {objSpace, objDirt}) then

 PlaceObject(objAmoeba, attribNone, NewPosition);

 endif

 endif

 endif

 endif

endprocedure

function AmoebaRandomlyDecidesToGrow(in integer

anAmoebaRandomFactor):Boolean

Randomly decide whether this amoeba is going to attempt to grow or not.

anAmoebaRandomFactor should normally be 127 (slow growth) but sometimes

is

changed to 15 (fast growth) if the amoeba has been alive too long.

 ASSERT(anAmoebaRandomFactor in {15, 127});

 return (GetRandomNumber(0, anAmoebaRandomFactor) < 4);

endfunction

Martijn’s Boulder Dash Fan Site
Web page design by Peter Broadribb

http://www.bd-fans.com/
mailto:peterb@perth.dialix.oz.au

